On the volume product of planar polar convex bodies — lower estimates with stability

نویسندگان

  • K. J. Böröczky
  • M. Meyer
چکیده

∗Research (partially) supported by Hungarian National Foundation for Scientific Research, grant nos. K68398, K75016, FP7 IEF grant GEOSUMSETS. ∗∗Research (par-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The volume product of convex bodies with many hyperplane symmetries

Mahler’s conjecture predicts a sharp lower bound on the volume of the polar of a convex body in terms of its volume. We confirm the conjecture for convex bodies with many hyperplane symmetries in the following sense: their hyperplanes of symmetries have a one-point intersection. Moreover, we obtain improved sharp lower bounds for classes of convex bodies which are invariant by certain reflectio...

متن کامل

On Volume Product Inequalities for Convex Sets

The volume of the polar body of a symmetric convex set K of Rd is investigated. It is shown that its reciprocal is a convex function of the time t along movements, in which every point of K moves with constant speed parallel to a fixed direction. This result is applied to find reverse forms of the Lp-Blaschke-Santaló inequality for two-dimensional convex sets.

متن کامل

Blaschke-santaló and Mahler Inequalities for the First Eigenvalue of the Dirichlet Laplacian

For K belonging to the class of convex bodies in R, we consider the λ1product functional, defined by λ1(K)λ1(K ), where K is the polar body of K, and λ1(·) is the first Dirichlet eigenvalue of the Dirichlet Laplacian. As a counterpart of the classical Blaschke-Santaló inequality for the volume product, we prove that the λ1product is minimized by balls. Much more challenging is the problem of ma...

متن کامل

OWP 2016 - 08 BERNARDO GONZÁLEZ MERINO AND MATTHIAS HENZE On Densities of

In 1978, Makai Jr. established a remarkable connection between the volume-product of a convex body, its maximal lattice packing density and the minimal density of a lattice arrangement of its polar body intersecting every affine hyperplane. Consequently, he formulated a conjecture that can be seen as a dual analog of Minkowski’s fundamental theorem, and which is strongly linked to the well-know...

متن کامل

An Application of Shadow Systems to Mahler's Conjecture

We elaborate on the use of shadow systems to prove a particular case of the conjectured lower bound of the volume product P(K) = minz∈int(K) |K|||K|, where K ⊂ R is a convex body and K = {y ∈ R : (y − z) · (x − z) 6 1 for all x ∈ K} is the polar body of K with respect to the center of polarity z. In particular, we show that if K ⊂ R is the convex hull of two 2-dimensional convex bodies, then P(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013